Abstract

AbstractLet $d \ge 3$ be an integer and let $P \in \mathbb{Z}[x]$ be a polynomial of degree d whose Galois group is $S_d$ . Let $(a_n)$ be a non-degenerate linearly recursive sequence of integers which has P as its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the lower density of the set of primes which divide at least one non-zero element of the sequence $(a_n)$ is positive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.