Abstract

AbstractLow cloud feedback in global warming projections by climate models is characterized by its positive sign, the mechanism of which is not well understood. Here we propose that the positive sign is primarily caused by the increase in upward longwave radiation from the sea surface. We devise numerical experiments that enable separation of the feedback into components coming from physically distinct causes. Results of these experiments with a climate model indicate that increases in upward longwave radiation from the sea surface cause warming and absolute drying in the boundary layer, leading to the positive low cloud feedback. The absolute drying results from decrease in surface evaporation, and also from decrease in inversion strength which enhances vertical mixing of drier free tropospheric air into the boundary layer. This mechanism is different from previously proposed understanding that positive low cloud feedback is caused by increases in surface evaporation or vertical moisture contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call