Abstract

AbstractIn 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limn→rTnf = f uniformly for all f∈C. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.