Abstract

The notion Perron-Frobenius theory usually refers to the interaction between three properties of operator semigroups: positivity, spectrum and long-time behaviour. These interactions gives rise to a profound theory with plenty of applications. By a brief walk-through of the field and with many examples, we highlight two aspects of the subject, both related to the long-time behaviour of semigroups: (i) The classical question how positivity of a semigroup can be used to prove convergence to an equilibrium as t → ∞. (ii) The more recent phenomenon that positivity itself sometimes occurs only for large t, while being absent for smaller times. This article is part of the theme issue 'Semigroup applications everywhere'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.