Abstract

The development of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and its demonstrated performance with large proteins has generated substantial interest in utilizing this technique as an alternative to gel electrophoresis for DNA sequence analysis. However, a lack of understanding of the desorption and ionization processes has greatly hampered advances in this field. This article explores the formation of positively charged oligonucleotides in UV (355-nm) MALDI analysis by using the matrix 2,5-dihydroxybenzoic acid. Whereas substantial fragmentation is observed in the positive-ion mode by using the short oligomer d(TAGGT), no fragmentation is evident in the negative-ion mode under identical conditions. The fragmentation products are consistent with a previously published model in which base protonation initiates base loss, which leads to subsequent cleavage of the phosphodiester backbone. Several polydeoxythymidilic acids containing modified nucleosides were used to investigate positive-ion formation. The results support the hypothesis that positive ions are formed by protonation of the nucleobases. Because base protonation initiates base loss, fragmentation is intrinsic to positive-ion formation in the MALDI analysis of oligonucleotides. This result explains the dramatic difference in fragmentation observed in positive-ion compared to negative-ion UV-MALDI mass spectra of oligonucleotides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call