Abstract

The cerebellum is critical for motor coordination and learning. However, the role of feedback circuitry in this brain region has not been fully explored. Here, we characterize a nucleo-ponto-cortical feedback pathway in classical delayed eyeblink conditioning (dEBC) of rats. We find that the efference copy is conveyed from the interposed cerebellar nucleus (Int) to cerebellar cortex through pontine nucleus (PN). Inhibiting or exciting the projection from the Int to the PN can decelerate or speed up acquisition of dEBC, respectively. Importantly, we identify two subpopulations of PN neurons (PN1 and PN2) that convey and integrate the feedback signals with feedforward sensory signals. We also show that the feedforward and feedback pathways via different types of PN neurons contribute to the plastic changes and cooperate synergistically to the learning of dEBC. Our results suggest that this excitatory nucleo-ponto-cortical feedback plays a significant role in modulating associative motor learning in cerebellum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.