Abstract

Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10-100s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.