Abstract

BackgroundPositive end-expiratory pressure (PEEP) has been demonstrated to decrease ventilator-induced lung injury in patients under mechanical ventilation (MV) for acute respiratory failure. Recently, some studies have proposed some beneficial effects of PEEP in ventilated patients without lung injury. The influence of PEEP on respiratory mechanics in children is not well known. Our aim was to determine the effects on respiratory mechanics of setting PEEP at 5 cmH2O in anesthetized healthy children.MethodsPatients younger than 15 years old without history of lung injury scheduled for elective surgery gave informed consent and were enrolled in the study. After usual care for general anesthesia, patients were placed on volume controlled MV. Two sets of respiratory mechanics studies were performed using inspiratory and expiratory breath hold, with PEEP 0 and 5 cmH2O. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory pressure (PIP), plateau pressure (PPL) and total PEEP (tPEEP) were measured. Respiratory system compliance (CRS), inspiratory and expiratory resistances (RawI and RawE) and time constants (KTI and KTE) were calculated. Data were expressed as median and interquartile range (IQR). Wilcoxon sign test and Spearman’s analysis were used. Significance was set at P < 0.05.ResultsWe included 30 patients, median age 39 (15–61.3) months old, 60% male. When PEEP increased, PIP increased from 12 (11,14) to 15.5 (14,18), and CRS increased from 0.9 (0.9,1.2) to 1.2 (0.9,1.4) mL·kg− 1·cmH2O− 1; additionally, when PEEP increased, driving pressure decreased from 6.8 (5.9,8.1) to 5.8 (4.7,7.1) cmH2O, and QE decreased from 13.8 (11.8,18.7) to 11.7 (9.1,13.5) L·min− 1 (all P < 0.01). There were no significant changes in resistance and QI.ConclusionsAnalysis of respiratory mechanics in anesthetized healthy children shows that PEEP at 5 cmH2O places the respiratory system in a better position in the P/V curve. A better understanding of lung mechanics may lead to changes in the traditional ventilatory approach, limiting injury associated with MV.

Highlights

  • Positive end-expiratory pressure (PEEP) has been demonstrated to decrease ventilator-induced lung injury in patients under mechanical ventilation (MV) for acute respiratory failure

  • There are many detrimental effects of positive pressure mechanical ventilation (MV) to the lung parenchyma, giving shape to the entity we know as ventilator induced lung injury (VILI) [1, 2]

  • Despite that it was initially described for injured lungs [3], VILI has been recognized to affect patients with uninjured lungs, triggering many pathways of local and systemic inflammation [1,2,3,4]

Read more

Summary

Introduction

Positive end-expiratory pressure (PEEP) has been demonstrated to decrease ventilator-induced lung injury in patients under mechanical ventilation (MV) for acute respiratory failure. There are many detrimental effects of positive pressure mechanical ventilation (MV) to the lung parenchyma, giving shape to the entity we know as ventilator induced lung injury (VILI) [1, 2]. Despite that it was initially described for injured lungs [3], VILI has been recognized to affect patients with uninjured lungs, triggering many pathways of local and systemic inflammation [1,2,3,4]. Protective ventilation during general anesthesia [16, 17] to limit tidal volume (6–8 ml/kg) has been widely accepted and incorporated into the operating room (OR), but PEEP use is still not a common practice for patients undergoing general anesthesia [6,7,8,9,10, 17, 18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call