Abstract

As one of the most promising photovoltaic technologies, perovskite solar cells (PSCs) exhibit high absorption coefficients, tunable bandgaps, large carrier mobilities, and versatile fabrication techniques. Nevertheless, the commercialization of the technology is hindered by poor material stability, short device lifetimes and the scalability of fabrication techniques. To address these technological drawbacks, various strategies have been explored, with one particularly promising approach involving the formation of a low-dimensional layer on the surface of the three-dimensional perovskite film. In this work, we demonstrate the use of guanidinium tetrafluoroborate, CH6BF4N3, (GATFB) as a post-treatment step to enhance the performance of PSCs. Compared with the control sample, the application of GATFB improves the film surface topology, reduces surface defects, suppresses non-radiative recombination, and optimizes band alignment within the device. These positive effects reduce recombination losses and enhance charge transport in the device, resulting in PSCs with an open-circuit voltage (VOC) of 1.18 V and a power conversion efficiency (PCE) of 19.7%. The results obtained in this work exhibit the potential of integrating low-dimensional structures in PSCs as an effective approach to enhance the overall device performance, providing useful information for further advancement in this rapidly evolving field of photovoltaic technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.