Abstract

Sedum alfredii Hance (S. alfredii) is a native hyperaccumulator plant species in China that has strong tolerance and accumulation ability for Zn and Cd. In addition, it is a good material for the phytoextraction of soil heavy metal pollutants. However, the specific effect of high Zn concentrations on the growth of S. alfredii and its metabolic mechanisms are not clear. Using an untargeted metabolomics method, we analysed the differential metabolites of the two ecotypes in S. alfredii roots under different Zn treatments. The results showed that high Zn levels significantly promoted plant growth in the hyperaccumulating ecotype (HE), while growth was inhibited in the non-hyperaccumulating ecotype (NHE). We detected 624 metabolites in the roots of S. alfredii. Under the high Zn treatment, lots of lipids and lipid-like molecules, such as glyceryl monooleate and 9,12,13-trihydroxyoctadecane-10-enoic acid, along with organic acids, such as lauramidopropylbetaine, L-malic acid, and their derivatives, decreased significantly in HE roots. Differential metabolites, such as some lipids and lipid-like molecules, were significantly upregulated in NHE roots. The above results indicate that the exogenous high Zn treatment induces the downregulation of HE differential metabolites in response to Zn, but significantly induces the upregulation of differential metabolites in NHE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call