Abstract

Positive velocity dependency of relative permeability of gas–condensate systems, which has been observed in many different core experiments, is now well acknowledged. The above behaviour, which is due to two-phase flow coupling in condensing systems at low interfacial tension (IFT) conditions, was simulated using a 3D pore network model. The steady-dynamic bond network model developed for this purpose was also equipped with a novel anchoring technique, which was based on the equivalent hydraulic length concept adopted from fluid flow through pipes. The available rock data on the co-ordination number, capillary pressure, absolute permeability, porosity and one set of measured relative permeability curves were utilised to anchor the capillary, volumetric and flow characteristics of the constructed network model to those properties of the real core sample. Then the model was used to predict the effective permeability values at other IFT and velocity levels. There is a reasonable quantitative agreement between the predicted and measured relative permeability values affected by the coupling rate effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.