Abstract

In this work we address the issue of integrating symmetric Riccati and Lyapunov matrix differential equations. In many cases -- typical in applications -- the solutions are positive definite matrices. Our goal is to study when and how this property is maintained for a numerically computed solution. There are two classes of solution methods: direct and indirect algorithms. The first class consists of the schemes resulting from direct discretization of the equations. The second class consists of algorithms which recover the solution by exploiting some special formulae that these solutions are known to satisfy. We show first that using a direct algorithm -- a one-step scheme or a strictly stable multistep scheme (explicit or implicit) -- limits the order of the numerical method to one if we want to guarantee that the computed solution stays positive definite. Then we show two ways to obtain positive definite higher order approximations by using indirect algorithms. The first is to apply a symplectic integrator to an associated Hamiltonian system. The other uses stepwise linearization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.