Abstract

The kernel of a continuous positive integral operator on an interval $I$ is a Moore matrix on $I$. We show that, under minimal differentiability assumptions, this implies that the kernel satisfies a 2-parameter family of differential inequalities. These inequalities ensure that, for unbounded $I$, the corresponding integral operator is exceptionally well behaved: it is compact and thus the eigenfunctions for its discrete spectrum have the differentiability of the kernel and satisfy sharp Sobolev bounds, the symmetric mixed partial derivatives are again kernels of positive operators and the differentiated eigenfunction series converge uniformly and absolutely. Converse results are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.