Abstract

In this paper, we further generalize the technique for constructing the normal (or positive definite) and skew-Hermitian splitting iteration method for solving large sparse nonHermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method converges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.