Abstract

A limitation to understanding drivers of long-term trends in terrestrial nitrogen (N) availability in forests and its subsequent influence on stream nitrate export is a general lack of integrated analyses using long-term data on terrestrial and aquatic N cycling at comparable spatial scales. Here we analyze relationships between stream nitrate concentrations and wood δ15N records (n = 96 trees) across five neighboring headwater catchments in the Blue Ridge physiographic province and within a single catchment in the Appalachian Plateau physiographic province in the eastern United States. Climatic, acidic deposition, and forest disturbance datasets were developed to elucidate the influence of these factors on terrestrial N availability through time. We hypothesized that spatial and temporal variation of terrestrial N availability, for which tree-ring δ15N records serve as a proxy, affects the variation of stream nitrate concentration across space and time. Across space at the Blue Ridge study sites, stream nitrate concentration increased linearly with increasing catchment mean wood δ15N. Over time, stream nitrate concentrations decreased with decreasing wood δ15N in five of the six catchments. Wood δ15N showed a significant negative relationship with disturbance and acidic deposition. Disturbance likely exacerbated N limitation by inducing nitrate leaching and ultimately enhancing vegetative uptake. As observed elsewhere, lower rates of acidic deposition and subsequent deacidification of soils may increase terrestrial N availability. Despite the ephemeral modifications of terrestrial N availability by these two drivers and climate, long-term declines in terrestrial N availability were robust and have likely driven much of the declines in stream nitrate concentration throughout the central Appalachians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.