Abstract

Induced pluripotent stem cells (iPSCs) and nuclear transfer (NT) are two of the primary routes to reprogram differentiated cells back to the pluripotent state. However, it is still unknown whether there is any correlation between the reprogramming efficiency of iPSCs and NT if the same donor cells are employed. In this study, six porcine embryonic fibroblast (PEF) lines from Landrace (L1, L6, L9) or Congjiang local pigs (C4, C5, C6) were used for iPSC induction and NT. Furthermore, the resultant iPSCs from four PEF lines (L1, L6, C4, and C5) were used for NT (iPSC-NT), and the expression of exogenous genes was detected in iPSC-NT embryos by real-time PCR. The results showed that the efficiency of iPSC lines established from different PEF lines were significantly different. When the same PEF lines were used as donor cells for NT, the blastocysts rates were also different among different PEF lines and positively related with iPSCs induction efficiency. When the iPSCs were used as donor cells for NT, compared with the source PEFs, the blastocysts rates were significantly decreased. Real-time PCR results indicated that exogenous genes (Oct4, c-Myc) continued to be expressed in iPSC-NT embryos. In summary, our results demonstrate that there was a positive correlation between iPSCs and NT reprogramming efficiency, although the mechanism of these two routes is different. This may provide a new method to select the appropriate donor cells for inducing iPSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call