Abstract

Escherichia coli responds to superoxide-generating agents by inducing approximately 40 proteins. We have identified a genetic locus, soxR (superoxide response), that positively regulates 9 of these proteins during superoxide stress. Induction under soxR control is at the transcriptional level, as shown with lac fusions to five paraquat-inducible promoters. Members of the soxR regulon include at least three proteins with demonstrable antioxidant roles: Mn-containing superoxide dismutase (which destroys superoxide radicals), endonuclease IV (which repairs radical-induced damages in DNA), and glucose-6-phosphate dehydrogenase (which produces NADPH). Induction of the soxR regulon also leads to diminished levels of the major outer membrane protein OmpF and alteration of the small-subunit ribosomal protein S6. These latter changes confer resistance to a variety of antibiotics. The soxR regulon may thus operate as an inducible defense against xenobiotics in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.