Abstract
During a major radiation event, a large number of people need to be rapidly assessed for radiation damage to ensure effective medical treatment and efficient use of medical resources. However, current techniques cannot meet the requirement of rapid detection of large quantities of samples in an emergency. It is essential to develop rapid and accurate radiation biodosimeters in peripheral blood. Here, we identified radiation sensitive genes in mice by RNA sequencing and evaluated their utility as radiation biodosimeters in human cell lines. Mice were subjected to gamma-irradiation with different doses (0–8 Gy, .85 Gy/min), and the tail venous blood was analyzed by RNA sequencing. We have identified 5 genes with significantly differential expression after radiation exposure. We found that positive cofactor 4(PC4) had well correlation with radiation dose in human lymphoblastoid cell line after irradiation. The relative expression of PC4 gene showed a good linear correlation with the radiation dose after 1–5 Gy irradiation (.85 Gy/min). PC4 gene can be rapidly recruited to the DNA damage sites faster than γ-H2AX after radiation in immunofluorescence detection. In conclusion, PC4 may be represented as new radiation biological dosimeter for early assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Dose-response : a publication of International Hormesis Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.