Abstract
This work is devoted to a preliminary investigation of positive Clifford semigroups on the plane. A positive semigroup is a semigroup which has a copy of the nonnegative real numbers embedded as a closed subset in such a way that 0 is a zero and 1 is an identity. A positive Clifford semigroup is a positive semigroup which is the union of groups. In this work it is shown that if S is a positive Clifford semigroup on the plane, then each group in S is commutative. Also, a necessary and sufficient condition is given in order that S be commutative, and an example is given of such a semigroup which is, in fact, not commutative. In addition, both the number and the structure of the components of groups in S is determined. Finally, it is shown that S is the continuous isomorphic image of a semilattice of groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.