Abstract

Although numerous experimental investigations have been carried out on the problem of defect engineering in semiconductor absorbers, the relationship among charge carrier, defects, heterointerfaces, and electromagnetic (EM) wave absorption has not been established systematically. Herein, the new thermodynamic and kinetic control strategy is proposed to establish multiphase Tix O2 x -1 (1 ≤ x ≤ 6) through a hydrogenation calcination. The TiOC-900 composite shows the efficient EM wave absorption capability with a minimum reflection loss (RLmin ) of -69.6dB at a thickness of 2.04mm corresponding to an effective absorption bandwidth (EAB) of 4.0GHz due to the holes induced conductance loss and heterointerfaces induced interfacial polarization. Benefiting from the controllable preparation of multiphase Tix O2 x -1 , a new pathway is proposed for designing high-efficiency EM wave absorbing semiconducting oxides. The validity of the method for adopting energy band theory to explore the underlying relations among charge carriers, defects, heterointerfaces, and EM properties in multiphase Tix O2 x -1 is demonstrated for the first time, which is of great importance in optimizing the EM wave absorption performance by electronic structure tailoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call