Abstract

1. Positive effects of biodiversity on plant productivity may result from diversity-induced changes in the size or density of individual plants, yet these two possibilities have never been tested at the same time in a biodiversity experiment with a large species pool. Here, we distinguish between size effects and density effects on plant productivity, using data from 198 experimental grassland communities that contained 1–16 species. Plant modules such as tillers or rosettes were defined as relevant units, being equivalent to plant individuals in the majority of species. 2. In agreement with previous studies, we found positive effects of species richness on above-ground productivity. We show that this positive biodiversity effect resulted from diversity-induced increases in module density rather than from increases in module size. In contrast, variation in productivity within diversity levels was related to module size rather than module density. 3. The size–density relationships varied among plant functional groups and among species but their average response to increasing species richness paralleled the pattern observed at the level of the entire plant communities: species richness had a positive effect on above-ground species biomass and species module density but not on species module size. Twenty-four out of 26 overyielding species had denser populations and 25 out of 28 underyielding species had smaller modules in mixtures than in monocultures. 4. Synthesis: In grasslands, an increase in community productivity must involve an increase in plant size or density. We found that diversity-induced increases in productivity were related to diversity-induced increases in density, whereas diversity-independent increases in productivity were related to increases in plant size. Our results suggest that increased density of overyielding species in mixtures was the main driver of the positive biodiversity–productivity relationship in our experiment. We conclude that the mechanisms leading to enhanced productivity of species-rich as compared with species-poor communities cannot be derived from mechanisms explaining high productivity within communities that contain a particular number of species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.