Abstract
ObjectiveBladder cancer is the 9th cause of human urologic malignancy and the 13th of death worldwide. Increased collagen cross-linking, NIDOGEN1 expression and consequently stiffness of extracellular matrix (ECM) may be responsible for the mechanotransduction and regulation of transcriptional co-activator with PDZ-binding motif (TAZ) and transforming growth factor β1 (TGF-β1) signaling pathways, resulting in progression of tumorigenesis. The present study aimed to assess whether type 1 collagen expression is associated with TAZ nuclear localization.Materials and MethodsIn this case-control study, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis were performed to evaluate the activation of the TAZ pathway in patients with bladder cancer (n=40) and healthy individuals (n=20). The ELISA method was also conducted to measure the serum concentrations of TGF-β1. Masson’s trichrome staining was carried out to histologically evaluate the density of type 1 collagen. Results Our findings that the expression levels of COL1A1, COL1A2, NIDOGEN1, TAZ, and TGF-β1 genes were overexpressed in patients with bladder cancer, and their expression levels were positively associated with the grade of bladder cancer. The immunohistochemical analysis demonstrated that the nuclear localization of TAZ was markedly correlated with high-grade bladder cancer. We also found that TAZ nuclear localization was substantially higher in cancerous tissues as compared with normal bladder tissues. Masson's trichrome staining showed that the tissue density of type I collagen was considerably increased in patients with bladder cancer as compared with healthy subjects. ConclusionAccording to our findings, it seems the alterations in the expression of type I collagen and NIDOGEN1, as well as TAZ nuclear localization influence the progression of bladder cancer. The significance of TGF-β1 and TAZ expression in tumorigenesis and progression to high-grade bladder cancer was also highlighted. However, a possible relationship between TGF-β1 expression and the Hippo pathway needs further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.