Abstract

A field-theoretic approach, analogous to Kraichnan's direct-interaction approximation, to the stability theory of complex three-dimensional flows is developed. The long-wavelength stability of a class of Beltrami flows in an unbounded, viscous fluid is considered. We examine two flows in detail, to illustrate the effects of strong isotropy versus strong anisotropy in the basic flow. The effect of the small-scale flow on the long-wavelength perturbations may be interpreted as an effective viscosity. Using diagrammatic techniques, we construct the first-order smoothing and direct-interaction approximations for the perturbation dynamics. It is argued that the effective viscosity for the isotropic flow is always positive, and approaches a value independent of the molecular viscosity in the high-Reynolds-number limit; this flow is thus stable to long-wavelength disturbances. The anisotropic flow has negative effective viscosity for some orientations of the disturbance, and is therefore unstable, when its Reynolds number exceeds \ensuremath{\surd}2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.