Abstract
We simulate short positive and negative streamers in air at standard temperature and pressure. First, double-headed streamers in homogeneous electric fields of 50 kV cm−1 are briefly studied, and then we analyse streamers that emerge from needle electrodes with voltages of 10–20 kV in more detail. The streamer velocity at a given streamer length depends only weakly on the initial ionization seed, except in the case of negative streamers in homogeneous fields. We characterize the streamer evolution by length, velocity, head radius, head charge and maximal field enhancement. We show that the velocity of positive streamers is determined mainly by their radius and in quantitative agreement with recent experimental results both for radius and velocity. The velocity of negative streamers is dominated by electron drift in the enhanced field; in the low local fields of the present simulations, it is little influenced by photo-ionization. Initially it is puzzling that negative streamers can be slower than positive ones under similar conditions, both in experiment and in simulation, as negative streamer fronts always move at least with the electron drift velocity in the local field. We argue that this drift motion broadens the streamer head, decreases the field enhancement and ultimately leads to slower propagation or even extinction of the negative streamer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.