Abstract

We study the dynamics of solitons in Bose–Einstein condensates (BECs) loaded into an optical lattice (OL), which is combined with an external parabolic potential. Chiefly, the one-dimensional (1D) case is considered. First, we demonstrate analytically that, in the case of the repulsive BEC, where the soliton is of the gap type, its effective mass is negative. In accordance with this, we demonstrate that such a soliton cannot be held by the usual parabolic trap, but it can be captured (performing harmonic oscillations) by an anti-trapping inverted parabolic potential. We also study the motion of the soliton in a long system, concluding that, in the cases of both the positive and negative mass, it moves freely, provided that its amplitude is below a certain critical value; above it, the soliton’s velocity decreases due to the interaction with the OL. Transition between the two regimes proceeds through slow erratic motion of the soliton. Extension of the analysis for the 2D case is briefly outlined; in particular, novel results are existence of stable higher-order lattice vortices, with the vorticity S ≥ 2 , and quadrupoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.