Abstract

This paper investigates the kinetics of buffer trapping in GaN-based normally-off high-voltage transistors. The analysis was carried out on transfer-length method (TLM) structures.By means of a custom setup, (i) we investigated the trapping and de-trapping processes induced by a large vertical bias and identified different mechanisms, responsible for the storage of negative and positive charge in the buffer. (ii) temperature-dependent analysis was carried out to evaluate the time constants associated to negative and positive charge build-up. Remarkably, the results indicate that the activation energy for negative charge trapping is ~0.3 eV, which is much lower than the ionization energy of carbon acceptors (0.8–0.9 eV). This result is explained by considering that trapping and de-trapping are not dominated by thermal processes (thermal emission from acceptors), but by transport mechanisms, that limit the transfer of charge to trap states. (iii) in the recovery experiments, after low stress bias negative charge trapping dominates. After high stress bias, also the effect of positive charge generation is detected, and the related activation energy is evaluated.The results presented within this paper clearly indicate that the trapping and de-trapping kinetics of normally-off GaN HEMTs are the results of the interplay of transport-limited conduction processes, that result in a low thermal activation (Ea ~ 0.3 eV), compared to that of CN acceptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.