Abstract

Trichloroacetic acid (TCAA) is an important environmental contaminant present in soils, water and plants. A method for determining the carbon isotope signature of the trichloromethyl position in TCAA using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was developed and tested with TCAA from different origins. Position-specific isotope analysis (PSIA) can provide direct information on the kinetic isotope effect for isotope substitution at a specific position in the molecule and/or help to distinguish different sources of a compound. The method is based on the degradation of TCAA into chloroform (CF) and CO₂ by thermal decarboxylation. Since thermal decarboxylation is associated with strong carbon isotope fractionation (ε = -34.6 ± 0.2‰) the reaction conditions were optimized to ensure full conversion. The combined isotope ratio of CF and CO₂ at the end of the reaction corresponded well to the isotope ratio of TCAA, confirming the reliability of the method. A method quantification limit (MQL) for TCAA of 18.6 µg/L was determined. Samples of TCAA produced by enzymatic and non-enzymatic chlorination of natural organic matter (NOM) and some industrially produced TCAA were used as exemplary sources. Significant different PSIA isotope ratios were observed between industrial TCAA and TCAA samples produced by chlorination of NOM. This highlights the potential of the method to study the origin and the fate of TCAA in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.