Abstract

Positioning multiple sensors for acquisition of a given environment is one of the fundamental research areas in various fields, such as military scouting, computer vision, and robotics. In this paper, we propose a new model for the problem of sensor deployment. Deploying and configuring a set of given sensors on a synthetically generated 3-D terrain have multiple objectives on conflicting attributes: maximizing the visibility of the given terrain, maximizing the stealth of the sensors, and minimizing the cost of the sensors used. Since they are utility-independent, these complementary and conflicting objectives are modeled by a multiplicative total utility function, based on multiattribute utility theory. The total utility function proposed in this paper can also be adapted for various military scouting missions with different characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.