Abstract

In this paper, we investigate the performance of positioning algorithms in wireless cellular networks based on time difference of arrival (TDoA) measurements provided by the base stations. The localization process of the mobile station results in a non-linear least squares estimation problem which cannot be solved analytically. Therefore, we use iterative algorithms to determine an estimate of the mobile station position. The well-known Gauss-Newton method fails to converge for certain geometric constellations, and thus, it is not suitable for a general solution in cellular networks. Another algorithm is the steepest descent method which has a slow convergence in the final iteration steps. Hence, we apply the Levenberg-Marquardt algorithm as a new approach in the cellular network localization framework. We show that this method meets the best trade-off between accuracy and computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.