Abstract
Sequence labeling is a fundamental task in natural language processing and has been widely studied. Recently, RNN-based sequence labeling models have increasingly gained attentions. Despite superior performance achieved by learning the long short-term (i.e., successive) dependencies, the way of sequentially processing inputs might limit the ability to capture the non-continuous relations over tokens within a sentence. To tackle the problem, we focus on how to effectively model successive and discrete dependencies of each token for enhancing the sequence labeling performance. Specifically, we propose an innovative attention-based model (called position-aware self-attention, i.e.,PSA) as well as a well-designed self-attentional context fusion layer within a neural network architecture, to explore the positional information of an input sequence for capturing the latent relations among tokens. Extensive experiments on three classical tasks in sequence labeling domain, i.e., part-of-speech (POS) tagging, named entity recognition (NER) and phrase chunking, demonstrate our proposed model outperforms the state-of-the-arts without any external knowledge, in terms of various metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.