Abstract

Here we detail an inductively coupled extender (ICE) and resonant (LC) sensor to monitor soil moisture using a portable reader. Significant advances of this ICE-LC design are extending typical LC sensor read range over a meter and reducing positional alignment sensitivity between reader and sensor. An analytical model validates the working principle and feasibility of the ICE-LC system. Prototypes of the ICE-LC sensor were built and optimized in terms of sensitivity and power transfer (single and four turns for ICE top and bottom coils, respectively). Soil moisture tests validated the ICE-LC improvements on minimized positional alignment sensitivity and extended read range, transducing a decrease in resonant frequency with increasing soil moisture. When calibrating with existing wired approaches, the ICE-LC sensor had a reproducible, linear sensor gain of 4.52%moisture content/MHz with an R2 of 0.745 and RMSE of 2.41%. A smaller, planar form factor of the ICE-LC sensor was also tested and exhibited reduced positional alignment sensitivity between reader and sensor at shorter read ranges. This initial study demonstrates the feasibility of the ICE-LC resonant sensor as a cost-effective method to monitor soil moisture content throughout the growing season at many field locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call