Abstract
Collagens contain a high amount of charged residues involved in triple-helix stability, fibril formation, and ligand binding. The contribution of charged residues to stability was analyzed utilizing a host-guest peptide system with a single Gly-X-Y triplet embedded within Ac(Gly-Pro-Hyp)3-Gly-X-Y-(Gly-Pro-Hyp)4-Gly-Gly-NH2. The ionizable residues Arg, Lys, Glu, and Asp were incorporated into the X position of Gly-X-Hyp; in the Y position of Gly-Pro-Y; or as pairs of oppositely charged residues occupying X and Y positions. The Gly-X-Hyp peptides had similar thermal stabilities, only marginally less stable than Gly-Pro-Hyp, whereas Gly-Pro-Y peptides showed a wide thermal stability range (Tm = 30-45 degrees C). The stability of peptides with oppositely charged residues in the X and Y positions appears to reflect simple additivity of the individual residues, except when X is occupied by a basic residue and Y = Asp. The side chains of Glu, Lys, and Arg have the potential to form hydrogen bonds with available peptide backbone carbonyl groups within the triple-helix, whereas the shorter Asp side chain does not. This may relate to the unique involvement of Asp residues in energetically favorable ion pair formation. These studies clarify the dependence of triple-helix stability on the identity, position, and ionization state of charged residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.