Abstract

UB1LYP method was used to study the geometries together with hyperfine coupling constants (hfccs) and natural atomic occupancies (NAO) for the cyclic (cyclohexanone-type) and bicyclic (camphor-type) iminoxy radicals. The positional and angular dependence of the hyperfine interactions, affected by radical substituents and conformations, was analyzed in terms of different mechanisms of spin density transmission. The calculations predicted a significant distortion of regular conformations and change of hyperfine couplings upon introduction of C O into cyclohexane iminoxyl and the C NO spin label into a boat cyclohexane. Hyperfine splittings of the EPR spectra were compared with the computed hfccs to verify their assignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.