Abstract

The concept of the natural mate and the conjugate curves associated to a smooth curve in Euclidian 3-space were introduced initially by Dashmukh and others. In this paper, we give some extra results that add more properties of the natural mate and the conjugate curves associated with a smooth space curve in E 3 . The position vectors of the natural mate and the conjugate of a given smooth curve are investigated. Also, using the position vector of the natural mate, the necessary and sufficient condition for a smooth given curve to be a Bertrand curve is introduced. Moreover, a new characterization of a general helix is introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.