Abstract
High-pressure liquid chromatography was used to detect oxygenated products of benzo[a]pyrene formed in a reconstituted microsomal mixed-function oxidase system containing cytochrome P-450 (P-450LM), phospholipid, and NADPH-cytochrome P-450 reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4). Three cytochrome fractions purified from a single source, hepatic microsomes from phenobarbital-treated rabbits, were studied; the various forms of the cytochrome are designated by their relative electrophoretic mobilities. The total benzo[a]pyrene oxygenation rate was greatest for P-450LM1,7, intermediate for P-450LM2, and least for P-450LM4. The phenolic products were eluted in two peaks, A and B, that contained primarily 9-hydroxy- and 3-hydroxybenzo[a]pyrene, respectively. The ratio of peak A to peak B phenols was 0.11 for P-450LM2 and 0.45 for P-450LM4. Thus, the relative amounts of the various phenols formed by these two cytochrome fractions differ markedly. The positional specificity of the hydroxylation is also indicated by large differences in the fluorescence spectra of the phenolic products formed by the two cytochromes. P-450LM2 and P-450LM4 did not form benzo[a]pyrene dihydrodiols, thereby showing that benzo[a]pyrene oxide hydratase activity was absent from these purified preparations. Ninety percent of the phenols formed by P-450LM1,7 were eluted in peak B; the metabolites produced by this preparation also included dihydrodiols, thus indicating the presence of hydratase activity. The positional specificities of different forms of cytochrome P-450 may channel polycyclic aromatic hydrocarbon metabolism into the various activation and detoxification pathways and thereby help determine the cytotoxic and carcinogenic activity of these compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.