Abstract

In this paper, we describe a position sensorless vector control system for a permanent magnet synchronous motor (PMSM) for a lawnmower in order to solve the problems of inferior dynamic performance and insufficient load resistance in the control process of lawnmower motors. A speed–current double-closed-loop vector control strategy was adopted to control the motor speed; an extended Kalman filter (EKF) was constructed to track the motor rotor position. STM32F407 was selected as the main control chip to establish the hardware experimental platform, and the performance of the control system was evaluated. The experimental results demonstrate that the control system accurately regulates motor speed, has good dynamic response characteristics, and can maintain stability under various loads; therefore, it meets the performance requirements of lawnmower motors in practical operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.