Abstract

The position of the maximum ceiling gas temperature indicates how far the fire plum could be blown away by a ventilation flow. It could be applied to estimate the activation of a detection system or a sprinkler system, or to estimate the range of damage to the tunnel structure. An equation for predicting the position of the maximum ceiling gas temperature in a tunnel fire is proposed based on a theoretical analysis and validated using both laboratory test data and full scale test data. A flame angle has been defined based on the position of the maximum ceiling temperature in a tunnel fire. The flame angle is directly related to the dimensionless ventilation velocity, and it becomes insensitive to the heat release rate for a large tunnel fire. Further, it is found that a constant critical flame angle exists, defined as the flame angle under the critical condition when the backlayering just disappears. For a given tunnel and fire source, the flame angle under critical conditions is the same value, independent of heat release rate, and the maximum ceiling temperature under critical conditions always corresponds to the same position. Generally the horizontal distance between the position of the maximum ceiling temperature and the fire source centre is around 1.5 times the effective tunnel height under the critical condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call