Abstract

A write-once memory (wom) is a storage medium formed by a number of “write-once” bit positions (wits), where each wit initially is in a “0” state and can be changed to a “1” state irreversibly. Examples of write-once memories include SLC flash memories and optical disks. This paper presents a low complexity coding scheme for rewriting such write-once memories, which is applicable to general problem configurations. The proposed scheme is called the position modulation code, as it uses the positions of the zero symbols to encode some information. The proposed technique can achieve code rates higher than state-of-the-art practical solutions for some configurations. For instance, there is a position modulation code that can write 56 bits 10 times on 278 wits, achieving rate 2.01. In addition, the position modulation code is shown to achieve a rate at least half of the optimal rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.