Abstract

Peptide modification with fatty acids is an effective method to improve peptide performance. We previously investigated the fatty acid modification of R-lycosin-I, a cytotoxic peptide derived from lycosin-I from the venom of the spider Lycosa singoriensis. In this study, we further investigated the position effects of fatty acid modification of lycosin-I. Dodecanoic acid was covalently coupled to the α/ε-amino group of one of the seven Lys residues of lycosin-I, generating eight different lipopeptides. Although all the lipopeptides had significantly improved cytotoxicity compared with lycosin-I, they displayed different cytotoxic potencies and profiles, which might be explained by multifactors including charge, size, helicity, hydrophobicity, and so forth. Of the eight lipopeptides, L-C12 demonstrated highest cytotoxicity and antimetastasis activity in two-dimensional cells, tumor spheroids, subcutaneous transplantation mouse models, and experimental melanoma metastasis mouse models. Collectively, our finding indicated that fatty acid modification position plays important roles in physiochemical parameters and biological activities of cytotoxic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.