Abstract

We present direct measurements of spatial and spectral resolution of cryogenic distributed readout imaging detectors (DROIDs). The spatial and spectral resolutions have been experimentally determined by scanning a 10μm spot of monochromatic visible light across the detector. The influences of the photon energy, bias voltage, and absorber length and width on the spatial and spectral resolutions have been examined. The confinement of quasiparticles in the readout sensors (superconducting tunnel junctions) as well as the detector’s signal amplitude can be optimized by tuning the bias voltage, thereby improving both the spatial and spectral resolutions. Changing the length of the absorber affects the spatial and spectral resolutions in opposite manner, making it an important parameter to optimize the DROID for the application at hand. The results have been used to test expressions for photon energy, position, and spatial and spectral resolutions which have been derived by using an existing one-dimensional model. The model is found to accurately describe the experimental data, but some limitations have been identified. In particular, the model’s assumption that the two sensors have identical response characteristics and noise, the approximation of the detailed quasiparticle dynamics in the sensors by border conditions, and the use of a one-dimensional diffusion process is not always adequate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.