Abstract

The position dependent mass Schrödinger equation (PDMSE) has a wide range of quantum applications such as the study of semiconductors, quantum wells, quantum dots and impurities in crystals, among many others. On the other hand, the Morse potential is one of the most important potential models used to study the electronic properties of diatomic molecules. In this work, the solution of the effective mass one-dimensional Schrödinger equation for the Morse potential is presented. This is done by means of the canonical transformation method in algebraic form. The PDMSE is solved for any model of the proposed kinetic energy operators as for example the BenDaniel-Duke, Gora-Williams, Zhu-Kroemer or Li-Kuhn. Also, in order to solve the PDMSE with Morse potential, we consider a superpotential leading to a special form of the exactly solvable Schrödinger equation of constant mass for a class of multiparameter exponential-type potential along with a proper mass distribution. The proposed approach is general and can be applied in the search of new potentials suitable on science of materials by looking into the viable choices of the mass function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call