Abstract

At least two hairpins in the 5' untranslated leader region, stem-loops 1 and 3 (SL1 and SL3), contribute to human immunodeficiency virus type 1 RNA encapsidation in vivo. We used a competitive assay, which measures the relative encapsidation efficiency of mutant viral RNA in the presence of competing wild-type RNA, to compare the contributions of SL1, SL3, and two adjacent secondary structures, SL2 and SL4, to encapsidation. SL2 is not required for RNA encapsidation, while SL1, SL3, and SL4 all contribute approximately equally to encapsidation. To determine whether these hairpins function in a position-dependent manner, we interchanged the positions of two of these stem-loop structures. This resulted in substantial diminution of encapsidation, indicating that the secondary structures that comprise E, the encapsidation signal, function only in their correct contexts. Mutation of nucleotides flanking SL1 and SL3 had little effect on encapsidation. We also showed that SL1, while present on both genomic and subgenomic viral RNAs, nonetheless contributes to selective encapsidation of genomic RNA. Taken together, these data are consistent with the formation of a higher-order RNA structure, partially composed of SL1, SL3, and SL4, that functions to effect concurrent encapsidation of full-length RNA and exclusion of subgenomic RNA. Finally, it has been reported that E is required for efficient translation of Gag mRNA in vivo. However, we have found that a variety of mutants, including a mutant lacking the entire region encompassing SL1, SL2, and SL3, still produce RNAs that are efficiently translated. These data indicate that E is unlikely to contribute to efficient Gag mRNA translation in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.