Abstract

AbstractSpecial point defects in semiconductors have been envisioned as suitable components for quantum‐information technology. The identification of new deep centers in silicon that can be easily activated and controlled is a main target of the research in the field. Vacancy‐related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy‐related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single‐ion implantation, producing Ge‐vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon‐based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi‐localized and delocalized many‐body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub‐threshold transport across the transistor. The combination of the model with the single‐ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.