Abstract
This study proposes a control method for servo motor position using a proportional-integral-derivative (PID) controller with particle swarm optimization (PSO). We use an AX-12 servo motor that is commonly used for robotic manipulator applications. The angular position of the servo motor will be controlled using the PID control method with PSO as a controller gain optimizer. Firstly, the transfer function model of the servo motor is generated using open-loop model identification. Then, the integral error of the closed-loop system is used as PSO input in producing PID controller gain. As an objective function of the PSO algorithm, the integral time absolute error (ITAE) index performance is used. The proposed controller was tested and compared with PID with the Ziegler-Nichols (ZN) method. We also conduct the hardware experiment using Arduino Uno as a microcontroller using one AX-12 servo motor on the base joint of the manipulator robot. Based on the simulation result, the PID-PSO controller can achieve the best control response performance if compared to PID-ZN with a rise time is less than 0.5 s, a settling time of fewer than 8 s, and an overshoot under 1.2%. The effectiveness of the proposed PID-PSO controller is also validated by hardware experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Robotics and Automation (IJRA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.