Abstract

The role of hydraulic systems is quite evident especially in the case of heavy machineries employed in industries, where the utilisation of high forces amid large stiffness is the prerequisite. Nevertheless, there has been substantial effort put forward in the development of advanced control strategies which finally addressed the issue of the position control. Proportional–integral–derivative control strategy happens to be one among them, which is a versatile and widely renowned approach involved in the position control in this study. Although, it is quite frequently observed that the hydraulic actuation system possesses strong nonlinearities. In this article, two different actuator position control strategies, that is, swash plate control of main pump and speed control strategy of prime mover are compared. In swash plate control strategy, the proportional–integral–derivative controller adjusts the swash plate of main pump through servo mechanism, whereas in the speed control strategy, the proportional–integral–derivative controller adjusts the speed of the electric motor through variable-frequency drive. For this purpose, two MATLAB-Simulink models are developed and validated experimentally. It is found that swash plate control strategy has better dynamic and control performance than the speed control strategy catering same position demand of the linear actuator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.