Abstract

We demonstrate in this contribution the evidence that significant cooperative binding effect can be identified for the amino acid sites that are determinant to the binding characteristics in peptide-peptide interactions. The analysis of tryptophan-scanning mutagenesis of the 14-mer peptide consisting only of glycine provides a mapping of position-dependent contributions to the binding energy. The pronounced tryptophan-associated peptide-peptide interactions are originated from the indole moieties with the main chains of 14-mer glycines containing N-H and CO moieties. Specifically, with the presence of two tryptophans as determinant amino acids, cooperative binding can be observed, which are dependent on relative positions of the two tryptophans with a "volcano"-like characteristics. An optimal separation of 6-10 amino acids between two adjacent binding sites can be identified to achieve maximal binding interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call