Abstract

A tripodal system for anchoring photochromic dithienylethenes on gold surfaces is reported. The self-assembled monolayers of a tripod-functionalized dithienylethene were characterized by cyclic voltammetry, surface-enhanced Raman spectroscopy (SERS), and X-ray photoelectron spectroscopy (XPS). These data are compared with solution studies, solid state Raman spectroscopy, and density functional theory (DFT) calculations. We show that the tripod-functionalized dithienylethene forms stable monolayers on gold in which all three legs of the tripod are adsorbed via the thiol units, thus providing a fixed position and orientation of the dithienylethene moiety with respect to the surface. Importantly, immobilization in this way allows for retention of both the photochemical and electrochemical functionality of the dithienylethene unit and reduces photochemical fatigue observed in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.