Abstract

The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn2+ bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 helix (R362H), and another in the S5 helix of the pore domain (A419H or F416H). Zn2+ bridges readily form between R362H and A419H in open channels after the S4 helix has undergone its final motion. In contrast, a distinct bridge forms between R362H and F416H after early S4 activation, but before the final S4 motion. Both bridges form rapidly, providing constraints on the average position of S4 relative to the pore. These results demonstrate that the outer ends of S4 and S5 remain in close proximity during the final opening transition, with the S4 helix translating a significant distance normal to the membrane plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.