Abstract

We calculate the uncertainties in the position and momentum of a particle in the 1D potential [Formula: see text], [Formula: see text], when the position and momentum operators obey the deformed commutation relation [Formula: see text], [Formula: see text]. As in the harmonic oscillator case, which was investigated in a previous publication, the Hamiltonian [Formula: see text] admits discrete positive energy eigenstates for both positive and negative mass. The uncertainties for the positive mass states behave as [Formula: see text] as in the [Formula: see text] limit. For the negative mass states, however, in contrast to the harmonic oscillator case where we had [Formula: see text], both [Formula: see text] and [Formula: see text] diverge. We argue that the existence of the negative mass states and the divergence of their uncertainties can be understood by taking the classical limit of the theory. Comparison of our results is made with previous work by Benczik.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.