Abstract

This paper introduces a framework for the design of tracking controllers for rigid-link electrically-driven (RLED) robot manipulators operating under constrained and unconstrained conditions. We present an intuitive nonlinear control strategy that can easily be reformulated for robots performing high precision tasks. The main emphasis is placed on the development of controllers that incorporate both motion in freespace and under constrained conditions. Another novelty is the combined treatment of force control and compensation for actuator dynamics. Based on models of the robot dynamics and environmental constraints, a reduced order dynamic model is obtained for the mechanical subsystem with respect to a set of constraint variables. A design procedure for tracking controllers is then formulated for the reduced order manipulator dynamics and the DC actuator dynamics. This paper concentrates on the theoretical aspects of the problem and, hence, is based on exact knowledge of the entire system. However, we have illustrated recently in [1] that this assumption can be generously relaxed in the design of a robust controller following a similar procedure as discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.